SPE / IADC 163422
Drilling Systems Automation
Preparing for the Big Jump Forward

John de Wardt, DE WARDT AND COMPANY
Thanks Committee

John de Wardt
Clinton Chapman
Michael Behounek
Adrian Vuyk
Brett Browning
Clay Flannigan
Devi Putra
Ed Tovar
Eric van Oort
Jim Rogers
Mario Zamora
Moray Laing
Roger Thompson
Thomas Burke

“Hume”
SPE Well Construction Automation Workshop
Vail, Colorado 18 July 2012
Drilling Systems Automation
a major force in capability development

• Automation in drilling systems coming quickly
 – Will you be left behind?
• Capability to deliver safety, quality, reliability, performance with interoperability
• Proven improvement
• Industrial automation and robotics offer solutions
• Vision of the Future
Unique combination for the workshop

- Experience from other industries
- Update on latest advancements
- Robotics, machine learning and autonomous task performance
- Major participation non oilfield
- Academia and Defense Advanced Research Projects Agency (DARPA)
Reasons DSATS organized the workshop

• Promote rapid adoption of drilling automation.
• Share knowledge of drilling automation activities.
• Understand the shift in skills and competencies that come with automation.
• Connect individuals and companies employing automation, industrializing components for automation, and researchers with those working on the forefront of automation in our industry.
It is not a new idea

1971 – Singles Rig

Hydraulic power based

Computer control – long before PC’s

Drilled for Major in Texas as R&D project

RIP
Industry challenges automation can solve them

• Reducing HSE exposure for those working at the rig site.
• Offsetting the limited capacity of the workforce.
• Improving levels of performance
 – reduce overall well times and safely impact well costs.
• Reducing costs of large numbers of similar wells.
• Enabling the exploitation of shales, coal bed methane and similar unconventional reserves.
• Advanced and intelligent technologies
 – at the range of the drilling envelope on a regular basis.
Why Automate?

- Don’t exceed maximum weight on the bit
- Don’t exceed the maximum RPM of the bit
- Avoid lateral vibrations
- Drill faster
- Don’t exceed make-up torque of the drill string
- Drill efficient
- Stay on target
- Clean the hole
- Drill this section without tripping; i.e. with one bit
- Time is money
- Avoid stick-slip vibrations
- Don’t stall the top drive
- Condition the hole
- Don’t buckle the pipe
- Don’t stall the downhole motor
- Go back to bottom fast and safely
- Connect a new pipe fast and safely

Courtesy Shell

Paper 163422 • Drilling Systems Automation – Preparing for the Big Jump Forward • John de Wardt
Proof – out perform the human driller

Combination of best performance and consistency

Courtesy Schlumberger
The various levels of automation being pursued were shown to fall into three primary categories:

- **Tier 1** – Advise driller allowing him to choose which recommendations to use and when;
- **Tier 2** – Semi-autonomous, where the driller retains control through consent or veto;
- **Tier 3** – Autonomous where the system decides and takes actions without the driller’s input.
Platform available to apply own apps
DARPA has some lessons

- Humans can’t intervene at highest rates
- Supervised automation, solve problems that defy basic models (navigation)
- Not a question of human or robot, its both

Courtesy Boston Dynamics
Automation can reduce human fatigue issues

Accident rate and shift duration

40 / million man hours

100

0
Human Systems Integration

- Optimal performance between low workload (autonomous) and high workload (low level automation) levels
- Train for new technology and to maintain skills
- Lower automation
 - Perform tasks with automated system as back up
- Higher automation
 - Simulation to maintain skills
- Including ergonomic assessment
Human Systems Integration

- Optimal performance between low workload (autonomous) and high workload (low level automation)
- Train for new technology and to maintain skills
- Lower automation – Perform tasks with automated system as back up
- Higher automation – Simulation to maintain skills
- Including ergonomic assessment

Paper 163422 • Drilling Systems Automation – Preparing for the Big Jump Forward • John de Wardt
Human Systems Integration

- Optimal performance between low workload (autonomous) and high workload (low level automation) levels
- Train for new technology and to maintain skills
 - Lower automation: Perform tasks with automated system as backup
 - Higher automation: Simulation to maintain skills
- Including ergonomic assessment
Human Automation Performance - methodology

• Measure human-automation performance automatically during operations
 – Monitor actions as they are performed to compute performance measures in real-time
 – Make performance data available remotely via web

• Use performance measures to assess and adjust human-automation team
 – Establish baseline performance
 – Detect and correct significant departures from baseline
Human Automation Performance - methodology

- Measure human-automation performance automatically during operations
 - Monitor actions as they are performed to compute performance measures in real-time
 - Make performance data available remotely via web

- Use performance measures to assess and adjust human-automation team
 - Establish baseline performance
 - Detect and correct significant departures from baseline

Executable language for authoring procedures for automation

Procedure (PRL)

Procedure Automation Server

Procedure Display

Execution Logs

Mobile Display

Software architecture that supports remote operations
Human Factors in Automation

- Real time performance monitoring of human and automated actions
 - Developed for space flight
 - Applicable to drilling systems automation
- Monitor via the web
 - Assess and adjust the human / automation team
Human Factors in Automation

- Real-time performance monitoring of human and automated actions
 - Developed for space flight
 - Applicable to drilling systems automation

- Monitor via the web
 - Assess and adjust the human / automation team

Remote access to ops effectiveness and personnel proficiency

At a glance performance data and automatic handover reports

Real-time metrics for human-automation performance

Courtesy Trac Labs
Interoperability is key

- Applicable industry standards are available
 - multi-vendor interoperability
 - data transfer of information
 - OPC UA
- Islands of automation will stifle development
 - Proprietary systems unable to communicate

- Field Bus Wars – 1990’s
 - Interoperable or die?
Vision – the future of drilling systems automation

- Land - Multiple work center machines
- Improved sensors
- Autonomous – with Mission Control
- Adaptive – manage uncertainty
- Plug and play interoperability

Vision timeline:
- 5 years - 35 votes
- 10 years - 32 votes
- 15 years - 3 votes
- 20 years and > - 0 votes
Observations

- Automation drilling systems gaining pace
 - Rate dependent on integration of data and control transfers
 - Interoperability standards will drive this
- Automation requires sufficient and suitable sensors
 - Upgraded sensors required – will be incorporated
- Industrial automation has solutions
- Advanced robotics and control system provide solutions
- Autonomous land drilling is coming fast
Acknowledgements

The authors acknowledge the support of their respective companies and the hard work by the workshop committee and SPE events coordinators to create a valuable event.

The workshop report has been added to OnePetro at www.onepetro.org with SPE number 163146.

Visit DSATS at http://connect.spe.org/dsats/home/