

Annual Technical Conference and Exhibition

24–26 September 2018 Dallas, Texas, USA Kay Bailey Hutchison Convention Center

SPE 191408

Automating Directional Drilling: Technology Adoption Staircase Mapping Levels of Human Interaction

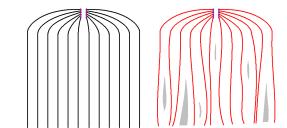
Robert Wylie, xⁿDrilling, Inc. John de Wardt, De Wardt and Company Kevin McClard, Performance Drilling Technology, Inc.

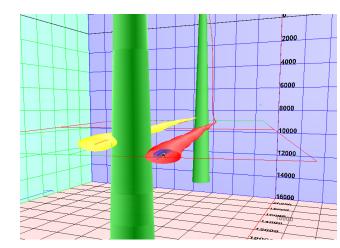
AGENDA

- Goal of Automation
- Levels of Automation Taxonomy
- Directional Drilling Automation
 - Pre-well
 - Drilling Operations
- Conclusions

Cognitive Functions

	INFORMATION ACQUISITION	INFORMATION ANALYSIS	DECISION AND ACTION SELECTION	ACTION IMPLEMENTATION
/els	Manual	Memory Analysis	Human Decision	Manual Action and Control
No.	Artifact-Supported	Artefact-Supported	Artefact-Supported	Artefact-Supported
Ľ	Low Level Automation	Low-Level Automation	Automated Decision Support	Step-by-step Action Support
ior	Medium-Level Automation	Medium-Level Automation	Rigid Automated Decision Support	Low-Level Support Action Execution
nat	High-Level Automation	High-Level Automation	Low-Level Automatic Decision Making	High-Level Support Action Execution
Automation Levels	Full Automation	Full Automation	High-Level Automatic Decision Making	Low-Level Action sequence Automation
Ā			Full Automatic Decision Making	Medium-Level Action sequence Automation
				High-Level Action Sequence Automation
				Full Automation

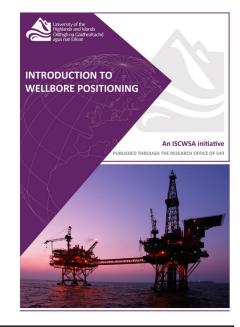

Levels of Automation Taxonomy (LOAT)


Good Directional Drilling and Wellbore Surveying Practices

- Increased reservoir exposure
- Improved well bore quality
 - lower drilling costs
 - easier completion
 - lower production costs and \$/BBL
- Increased Asset Value

Challenges

- Increase in horizontal wells and lateral lengths
 - need for more experienced Directional Drillers
- Higher ROP
 - less available time for good decision making


Drive To Automation

Operators asking for

- more transparency in Directional Drilling processes
- implementation of best practices
- more consistency (Continuous Improvement Process)
- reduced risk
- improved HSE
 - reduced personnel at wellsite
 - reduced impact on environment

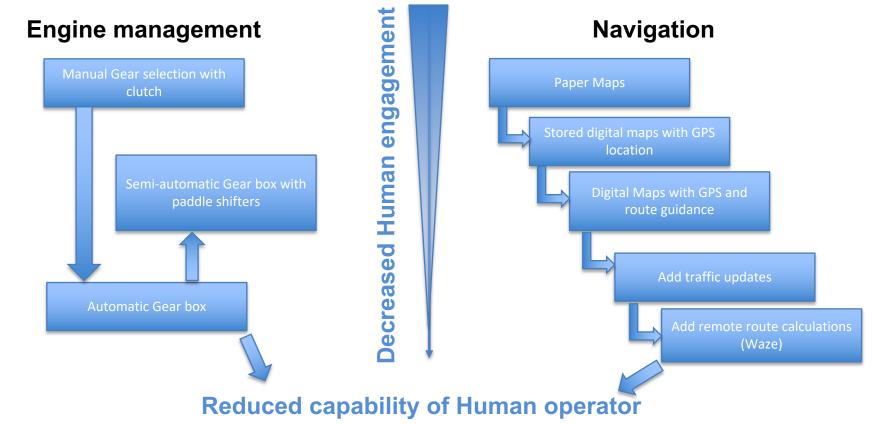
"Automation"

Free eBook: http://www.uhi.ac.uk/en/researchenterprise/energy/wellbore-positioning-download

LOAT - Levels of Automation

	INFORMATION ACQUISITION	INFORMATION ANALYSIS	DECISION AND ACTION SELECTION	ACTION IMPLEMENTATION	tion
	Manual	Memory Analysis	Human Decision	Manual Action and Control	Interaction
	Artifact-Supported	Artefact-Supported	Artefact-Supported	Artefact-Supported	ter
N	Low Level Automation	Low-Level Automation	Automated Decision Support	Step-by-step Action Support	
	Medium-Level Automation	Medium-Level Automation	Rigid Automated Decision Support	Low-Level Support Action Execution	Human
	High-Level Automation	High-Level Automation	Low-Level Automatic Decision Making	High-Level Support Action Execution	nυ
	Full Automation	Full Automation	High-Level Automatic Decision Making	Low-Level Action sequence Automation	
			Full Automatic Decision Making	Medium-Level Action sequence Automation	l of
				High-Level Action Sequence Automation	evel
				Full Automation	Ľ

Manual


Human - increasing Artefact Support

System Automation - decreasing Human supervision

Full Automation

Automation Levels

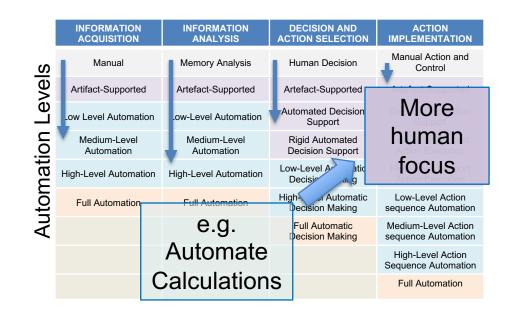
LOAT - Levels of Automation – automotive examples

LOAT - Four Cognitive Functions

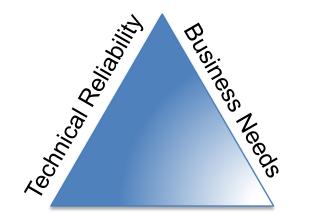
- **Data Acquisition**
- **Information Analysis**
- **Decision Making and Action Selection**
- Action Implementation

Cognitive Functions

	INFORMATION ACQUISITION	INFORMATION ANALYSIS	DECISION AND ACTION SELECTION	ACTION IMPLEMENTATION
S	Manual	Memory Analysis	Human Decision	Manual Action and Control
evels	Artifact-Supported	Artefact-Supported	Artefact-Supported	Artefact-Supported
Ū L	Low Level Automation	Low-Level Automation	Automated Decision Support	Step-by-step Action Support
UC	Medium-Level Automation	Medium-Level Automation	Rigid Automated Decision Support	Low-Level Support Action Execution
atio	High-Level Automation	High-Level Automation	Low-Level Automatic Decision Making	High-Level Support Action Execution
Automatio	Full Automation	Full Automation	High-Level Automatic Decision Making	Low-Level Action sequence Automation
uto			Full Automatic Decision Making	Medium-Level Action sequence Automation
\triangleleft				High-Level Action Sequence Automation
				Full Automation


Levels of Automation Taxonomy (LOAT)

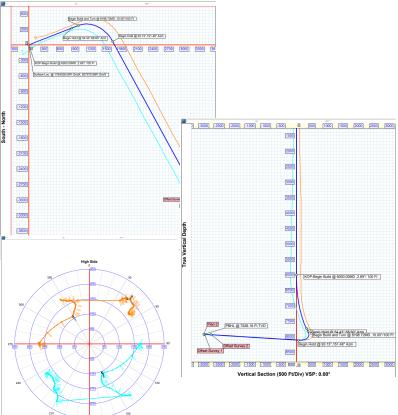
Annual Technical Conference and Exhibition


LOAT - Levels of Automation

Each Function can be automated to a different level

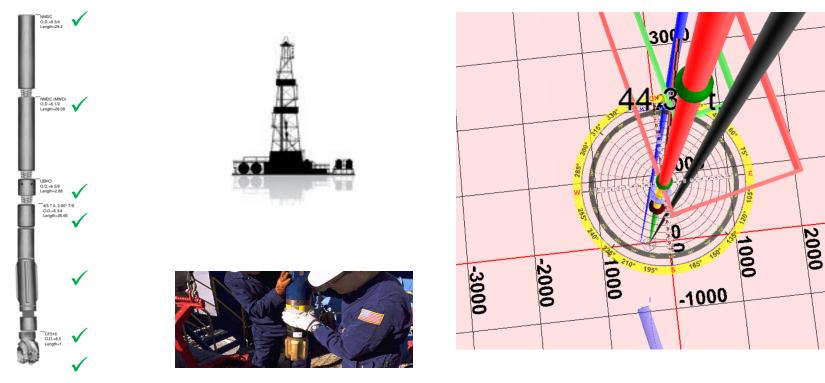
- To allow focus where the human brings most value
- To maximize the benefits from validated automated processes.

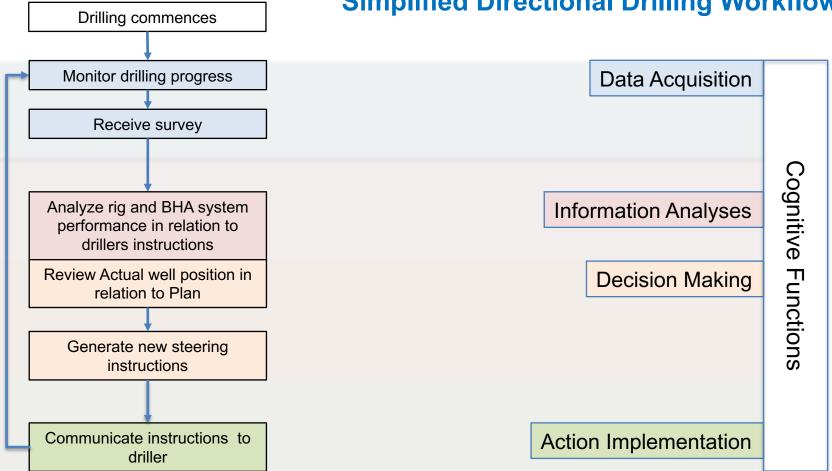
LOAT - Levels of Automation



Human Competence

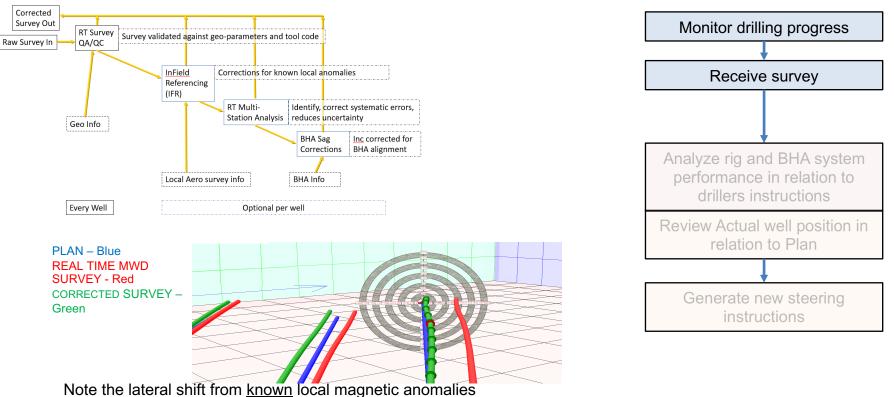
INFORMATION ACQUISITION		INFORMATION ANALYSIS	DECISION AND ACTION SELECTION	ACTION IMPLEMENTATION
6	Manual	Memory Analysis	Human Decision	Manual Action and Control
evels	Artifact-Supported	Artefact-Supported	Artefact-Supported	Artefact-Supported
ē	Low Level Automation	Low-Level Automation	Automated Decision Support	Step-by-step Action Support
n L	Medium-Level Automation	Medium-Level Automation	Rigid Automated Decision Support	Low-Level Support Action Execution
atio	High-Level Automation	High-Level Automation	Low-Level Automatic Decision Making	High-Level Support Action Execution
vutomation	Full Automation	Full Automation	High-Level Automatic Decision Making	Low-Level Action sequence Automation
uto			Full Automatic Decision Making	Medium-Level Action sequence Automation
Ā				High-Level Action Sequence Automation
				Full Automation


Achieve the right balance


Pre-well operations NMDC O.D.=6 3/4 Length=29.2 -300 -600 **Target Selection** -900 -1200 -1500 -1800 NMDC (MWD) O.D.=6 1/2 Length=28.08 -2100 Well Planning -2400 -2700 -3000 -3300 **BHA Selection** O.D.=6 5/8 Length=2.88 -3600 4/5 7.0. 2.00° T/S O.D.=6 3/4 Length=26.65 Low level Artefact Support Plan 2 MD = 11100.00 lnc = 93.13 Azm = 151.48 EW = 2595.25 NS = -1723.82 TVD = 8006.03 DLS = 0.00 Subsea = 6491.03 Closure = 315.59 @ CLDIR = 123.59 @ CPerso T to tooale! 4000 0008 CF516 O.D.=8.5 Length=1 2000

SPE 191408 • Automating Directional Drilling: Technology Adoption Staircase • Robert Wylie, et al

Drilling Operations



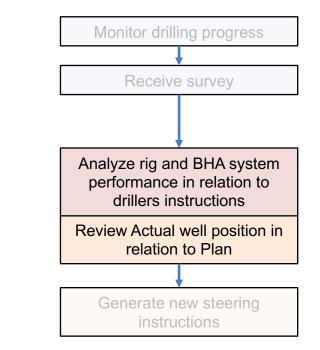
Society of Petroleum Engineers Annual Technical Conference and Exhibition

Simplified Directional Drilling Workflow

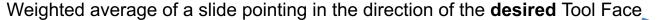
Drilling Operations - Data Acquisition

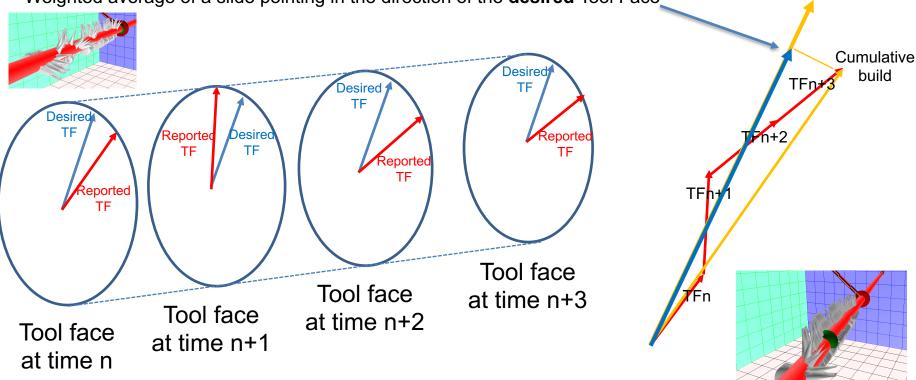
Drilling Operations - Data Acquisition

INFORMATION ACQUISITION	Well Plan	вна	Rig Equipment	Rig RT Drilling Data	Survey Data
Manual	Manual	Manual	Manual		
Artifact-Supported	Artifact- Supported	Artifact- Supported	Artifact-Supported		
Low Level Automation	Low Level Automation			Low Level Automation	Low Level Automation
Medium-Level Automation	Medium-Level Automation			Medium-Level Automation	Medium-Level Automation
High-Level Automation				High-Level Automation	High-Level Automation
Full Automation					


Information Analyses Function

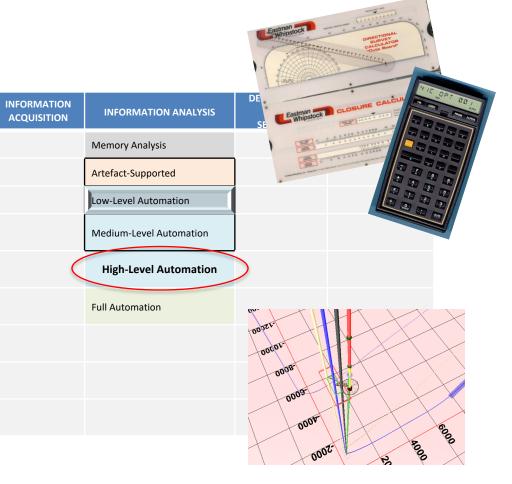
Output used for :

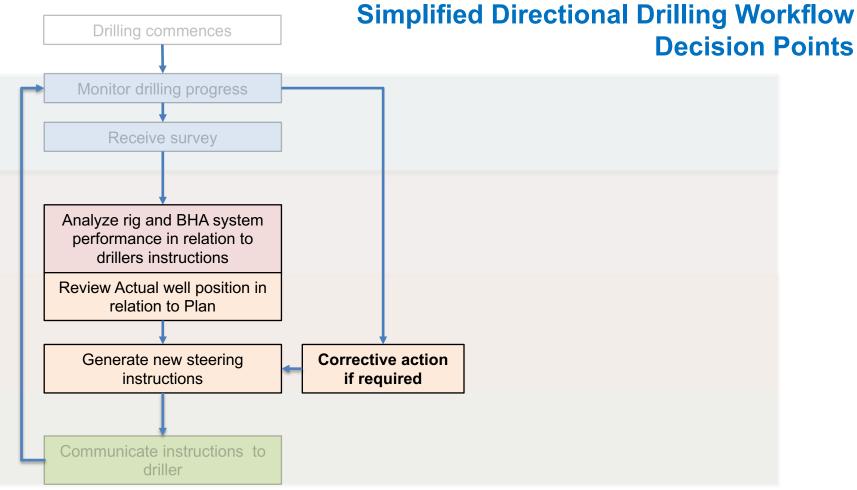

- Historical reports
- Real Time decision making

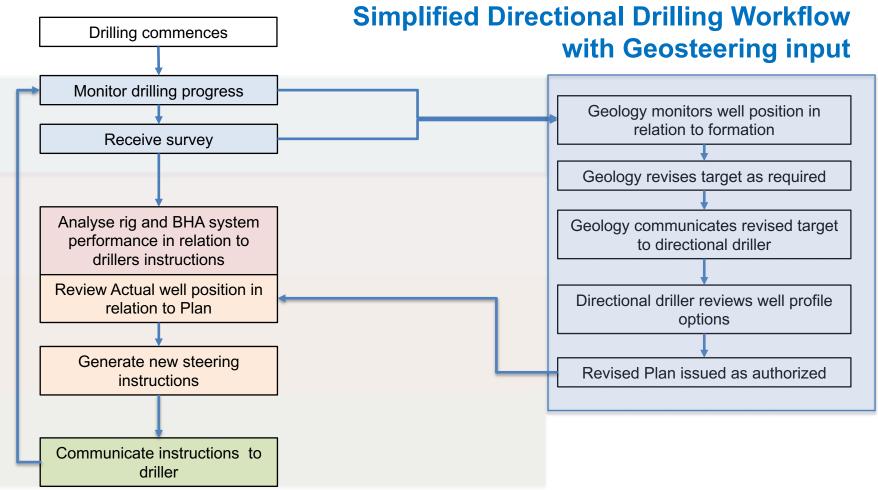

Decision Making Function requires :

- Wellbore position vs desired position, including
 - Approved Surveys
 - last survey to bit
- Drilling system performance
 - BHA performance vs formation : Motor Yield, Build Rate, Turn Rate
 - ability to hold Tool Face

Tool Face Efficiency

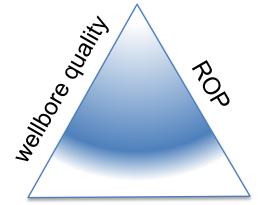

Cumulative desired build


Information Analyses Function


Supported by calculators for years

Modern Automation Systems

Capable of analyzing and presenting results every time a new data point is available



Drilling Operations - Decision Making and Action Selection

Decisions

- current Path adequate
- current BHA adequate to drill ahead
- slide or rotate
- slide length and Tool Face
- consider
 - relative ROP between steering and rotating
 - wellbore quality
 - anti-collision risks
 - future pad slots
- Balance Wellbore Quality with ROP and risk

risk tolerance

Drilling Operations - Decision Making and Action Selection

Automated Decision Making :

can improve consistency

between individual directional drillers,

between wells

of delivery of company policies

DSA-R LOAT LEVELS	Directional Drilling Automation System Levels
C0. The human generates decision options, selects the appropriate ones, and decides on all actions to be performed.	
C1. The human generates decision options, makes a selection and decides on all actions to be performed utilizing paper or other non-digital artifacts	C1a. The human generates decision options, makes a selection and decides on all actions to be performed utilizing paper or other non-digital artifacts
	C1b. The human generates decision options, makes a selection, and decides all actions to be performed, with digital artefact support.
C2. Automated Decision Support, where the system proposes one or more decision alternatives, and the human can select one of those or use one of his/her own.	C2a. System offers rotate or slide alternatives with slide length and tool face Set Points, for human to pass to Driller
	C2b. System recommends Set Points and allows modifications before passing to Driller
C3. Rigid Automation Decision Support, where the human may only select one of the system generated options or request that new options be generated.	C3a. System recommends Set Points and asks for human selection before passing to Driller
	C3b. System recommends Set Points and passes them to Driller unless human aborts
C4. Low Level Automatic Decision Making, where the system generates options, decides autonomously which to perform, and informs the human.	C4. System recommends Set Points and passes them to the Driller or drilling control system, while informing the human
C5. High Level Automatic Decision Making, where the system generates options, decides autonomously which to perform, and informs the human only if requested.	C5. System recommends Set Points and passes them to the Driller or Drilling Control System, while informing the human only if requested
C6. Full Automation Decision Making, where the system generates options, decides autonomously which to perform, without informing the human.	C6. System recommends Set Points and passes them to Drilling Control System for Action.

SPE 191408 • Automating Directional Drilling: Technology Adoption Staircase • Robert Wylie, et al

Drilling Operations - Action Implementation

Manual	Verbal communications from Directional Driller to Driller <i>Driller enters parameters and implements</i>
Human - increasing Artefact Support	Digital Communications from Automation System to Driller <i>Driller enters parameters and implements</i>
System Automation - decreasing Human supervision	Digital Communications from Automation System to Rig Control System <i>Driller authorizes implementation</i>
Full Automation	Digital Communications from Automation System to Rig Control System <i>Rig Control System implements automatically</i>

Driller responsible for rig operations

Drilling Operations - Action Implementation

Higher levels of automation require:

the involvement of Rig Control System builders

increased acceptance and implementation of the automated decisions

DSA-R LOAT LEVELS	Directional Drilling Automation System equipment examples	Directional Drilling Automation System Implementation Level
D0. Human executes and controls manually.	D0. Mechanical and SCR rigs	D0. Directional Driller gives Set Points to Driller verbally.
D1. Artefact-supported Action Implementation. The human executes and controls actions with the help of mechanical non-software based tools	D1. Joystick and electronic control system rigs.	D1. Display the received Set Points to the driller for manual input and implementation.
D2. Step-by-step Action Support. The system assists the operator in performing actions by executing part of the action and/or by providing guidance for its execution, However, each action is based on human initiative and the human keeps full control of its execution	D2. Autodriller maintaining WOB, ROP, or Diff P set points.	D2. The Set Points are received by the Rig Control System (RCS) and displayed to the driller for manual input and implementation.
D3. Low-level <u>Support</u> of Action Sequence Execution. The system performs automatically a sequence of actions after activation by the human. The human maintains full control of the sequence and carn modify or interrupt the sequence during its execution	D3a. Top Drive Oscillator systems assisting with transfer of weight down hole to the bit and helping to maintain downhole Tool Face.	3a. The Set Points are received by the Rig Control System (RCS), displayed to the driller, and implemented after approval or modification by the driller.
	D3b.	D3b. The Set Points are received by the Rig Control System (RCS), displayed to the driller, and implemented after approval by the driller.
D4. High level <u>Support</u> of Action Sequence Execution. The system performs automatically a sequence of action after activation by the human. The human can monitor all the sequence and can interrupt it during its execution.	D4.	D4. The Set Points are received by the Rig Control System (RCS), displayed to the driller, and implemented unless driller aborts.
D5. Low-level <u>Automation</u> of Action Sequence Execution. The system initiates and executes automatically a series of actions. The human can monitor all the sequence and can modify or interrupt it during its execution.	D5.	D5. The Set Points are received by the Rig Control System (RCS) and implemented while informing driller.
D6. Medium-level <u>Automation</u> of Action Sequence Execution. The system initiates and executes automatically a sequence of actions. The human can monitor all the sequence and can interrupt it during its execution	D6.	The Set Points are received by the Rig Control System (RCS) and implemented, informing driller only if requested.
D7. High-level <u>Automation</u> of Action Sequence Execution. The system initiates and executes a sequence of actions. The human can only monitor part of it and has limited opportunities to interrupt it.	D7.	The Set Points are received by the Rig Control System (RCS) and implemented, informing driller only if requested.
D8. Full <u>Automation</u> of Action Sequence Execution. The system initiates and executes a sequence of actions. The human cannot monitor nor interrupt it until the sequence is terminated.	D8.	The Set Points are received by the Rig Control System (RCS) and implemented through completion of the sequence without human interference.

SPE 191408 • Automating Directional Drilling: Technology Adoption Staircase • Robert Wylie, et al

Conclusions

- The LOAT can be applied beneficially to Directional Drilling Automation
- It can help manage expectations and provide a path forward
- Best practices in wellbore placement are being widely adopted
- Wellbore survey management programs are being progressively automated
- Value can be delivered with proper management of existing data flows
- Automated systems can improve operational efficiencies for directional wells
- Each cognitive function can be automated to a different level

Automation is neither all or nothing nor the end goal but a means of providing value when used appropriately

Society of Petroleum Engineers

SPE>>ATCE

Annual Technical Conference and Exhibition

Slide 25 24–26 September 2018 Dallas, Texas, USA Kay Bailey Hutchison Convention Center

Thank You

